
Make Integration Testing
easy for Developers
& Agile Teams

WHITEPAPER

HYPERTEST

Discover proven strategies to eliminate integration
failures in your apps & services

TABLE OF CONTENTS

3-5

Downstream changes ➡️ Upstream failures
Writing integration tests harder than development
Collaboration in multi-service env is not easy
Debugging nightmare

WHAT MAKES INTEGRATION TESTING
DIFFICULT FOR DEVELOPERS?

WHY UNIT TESTS ARE NOT ENOUGH?

INTEGRATION TESTING MADE EASY WITH

HYPERTEST

1

2

3

6-7

8-9

Unit Tests have limited scope
High coverage ➡️ low quality
Incomplete Testing
No coverage for validations

What Makes Integration Testing
Difficult for Developers?

Achilles Heel for all modern distributed backends

All modern applications are
distributed. This design helps
accelerate development and
maintain performance, reliability
and fault tolerance at scale.

But this exposes modern
applications to the risk of
integration failures i.e. issues and
downtimes because of failing
interactions between your code
and its dependencies.

Consider incorrect database calls,
failing inter-service or 3rd party
API contracts and erroneous
async operations.

The hidden
cost of
microservices
is managing
integration
failures

DOWNSTREAM
CHANGES ➡️ UPSTREAM
FAILURES

DEBUGGING
NIGHTMARE

COLLABORATION IN
MULTI-SERVICE SETUP
NOT EASY

WRITING INTEGRATION
TESTS HARDER THAN
DEVELOPMENT

Frequent service changes lead
to unexpected upstream failures.
This becomes even harder to
predict with multiple
dependencies or unclear
dependency chains, causing
chaos for developers

Debugging these issues is
difficult for developers. Tracing
the failing request through
multiple services lacks any easy
way. Most devs struggle to
pinpoint the origin of the
problem

Very hard for devs to collaborate
in a large team over changes
that involve multiple services.
What it gives? Larger teams and
too many services

2 problems: Devs mostly write
unit tests, which are never
enough. Second, testing
integrations means simulating
or mocking dependencies
which is never easy to get right

01 02

0403

Unit tests are useful for checking the logic within a service but
fail to test the dependencies between services.

Too much reliance on unit tests has its risks:

UNIT TESTS HAVE
LIMITED SCOPE

Microservices interact with
databases, services,
queues, and APIs. Unit
tests focus on isolated code
fragments but not these
interactions. For services, a
broad testing scope is
crucial.

HIGH COVERAGE
➡️ LOW QUALITY

Dev writes a test for adding
numbers, but only checks if
the output is a number, not
the correct sum. This low-
quality test covers the
function but misses a bug.

INCOMPLETE TESTING

Unit tests miss interaction
failures. These, often the
trickiest issues, can cause
data loss, slowdowns, or
production crashes.

NO COVERAGE
FOR VALIDATIONS

Validations check logical
boundaries but tests that
cover all the lines but poorly
validate these boundaries
still end up reporting high
coverage.

Why Unit Tests are NOT enough?

HyperTest is a game
changer for us in
integration testing, It
has significantly
saved time and effort
by green-lighting
changes before they
go live with our
weekly releases.

TESTS INTEGRATION
SCENARIOS

RUN WITH CI OR LOCAL

HyperTest captures real
interactions between code and
external components using
actual application traffic, then
converted into integration tests

It verifies data and
contracts across all
database, 3rd party API
calls and events

These tests can be run
locally or with CI pipeline
much like unit tests

SMART MOCKING

HyperTest mocks external
components and auto-
refreshes mocks when
dependencies change
behaviour

Integration Testing made easy for
Developers with HyperTest

CTO, Airmeet
Vinay Jaasti

HYPERTEST

http://hypertest.co/
http://hypertest.co/
http://hypertest.co/
http://hypertest.co/

HyperTest is initialized on every microservice with its SDK.

It then generates the trace of every incoming call i.e.
request, response, outgoing call and outbound response.

When done for all services, it generates an observability
chart that reports all upstream-downstream pairs i.e.
relationship between all services.

Observability

HyperTest context
propagation provides traces
that spans multiple micro-
services and helps developers
debug the root cause of any
failure in a single view

Distributed
Tracing

Support
Multiple
Protocols

HyperTest is capable of
supporting all the commonly
used web protocols like HTTP
HTTP 1.1 , HTTP 2 LIKE
GraphQL, gRPC etc.

Also supports all non-http calls
like databases, queues like
Kafka, NATS, RabbitMQ and all
pub/sub systems

HTTP, HTTP1.1, HTTP 2

SQL / noSQL databases

Message Queues and
Pub/Sub Systems

Web sockets

HyperTest generates a code coverage report after every run.
This highlights clearly how it tests code paths for both the data
and integration layer along with the core logic

Code Coverage

Regressions
shown in code

coverage report

uncovered lines
of code

highlighted

Complete
summary of
code coverage

TEST MODE

HyperTest smartly mocks external systems like databases, queues,
downstream or 3rd party APIs that your code interacts with.

It also smartly auto-refreshes these mocks as dependencies change
their behavior keeping tests non-flaky, deterministic, trustworthy and
consistent

TEST GENERATION MODE

Smart-Mocking

Testing Payment Service

With HyperTest

01 Payment Service

HyperTest sets initial
state with mocked
data

Mock Data
Available

Direct Start

HyperTest provides
pre-recorded
scenarios for all
service calls including
user login, product
search, and cart
additions

01

02

03

04 Proceed to Payment

Choose UPI method

S
U
T

Without HyperTest

User Login

User logs in

State: Logged in

Search for Product

Find product

State: Product
selected

Add to Cart

Add product to cart

State: Cart
updated

Action: Submit
payment

To test the fourth step of
this user journey, first
maintain the state to

ensure all necessary data
is in place to reach your

chosen step.

HyperTest can test stateful flows without needing
teams to create or manage test data.

Never worry about creating
or managing test data

Generating Greatness

Companies like Porter,
Paysense, Nykaa, Mobisy,
Skuad and Fyers leverage
HyperTest to accelerate time
to market, reduce delays and
improve code quality without
needing to write or maintain
automation

Summary

 Node SDK Launch

2023

Launched our
Java SDK

2024

100 services go
live

2023

HyperTest was
started

2022

The hidden cost of microservices is integration
failures.

With the help of its capabilities like Smart
mocking, no test data preparation, tracing
etc., HyperTest is trying to make this
uncertainty go away by making integration
testing easy for developers. Teams should
never leak integration failures.

HYPERTEST

http://hypertest.co/
http://hypertest.co/
http://hypertest.co/
http://hypertest.co/

