«\ HYPERTEST

Make Integration Testing
easy for Developers
& Agile Teams

Discover proven strategies to eliminate integration
failures in your apps & services

WHITEPAPER <

TABLE OF CONTENTS

WHAT MAKES INTEGRATION TESTING
DIFFICULT FOR DEVELOPERS?

Downstream changes kd Upstream failures
Writing integration tests harder than development
Collaboration in multi-service env is not easy
Debugging nightmare

° WHY UNIT TESTS ARE NOT ENOUGH?

Unit Tests have limited scope
High coverage E3 low quality
Incomplete Testing

No coverage for validations

INTEGRATION TESTING MADE EASY WITH
HYPERTEST

3-5

6-7

(14

What Makes Integration Testing
Difficult for Developers?

The hidden
cost of

microservices
is managing

integration
failures

~

29—

All modern applications are
distributed. This design helps
accelerate development and
maintain performance, reliability
and fault tolerance at scale.

But this exposes modern
applications to the risk of
integration failures i.e. issues and
downtimes because of failing
interactions between your code
and its dependencies.

Consider incorrect database calls,
failing inter-service or 3rd party
APl contracts and erroneous
async operations.

Achilles Heel for all modern distributed backends

O1

DOWNSTREAM
CHANGES UPSTREAM
FAILURES

Frequent service changes lead
to unexpected upstream failures.
This becomes even harder to
predict with multiple
dependencies or unclear
dependency chains, causing
chaos for developers

03

COLLABORATION IN
MULTI-SERVICE SETUP
NOT EASY

Very hard for devs to collaborate
in a large team over changes
that involve multiple services.
What it gives? Larger teams and
too many services

02

WRITING INTEGRATION
TESTS HARDER THAN
DEVELOPMENT

2 problems: Devs mostly write
unit tests, which are never
enough. Second, testing
integrations means simulating
or mocking dependencies
which is never easy to get right

04

DEBUGGING
NIGHTMARE

Debugging these issues is
difficult for developers. Tracing
the failing request through
multiple services lacks any easy
way. Most devs struggle to
pinpoint the origin of the
problem

Why Unit Tests are NOT enough?

Unit tests are useful for checking the logic within a service but
fail to test the dependencies between services.

Too much reliance on unit tests has its risks:

HIGH COVERAGE
LOW QUALITY

UNIT TESTS HAVE
LIMITED SCOPE

Dev writes a test for adding
numbers, but only checks if
queues, and APIs. Unit the output is a number, not
tests focus on isolated code the correct sum. This low-
fragments but not these quality test covers the
interactions. For services, a function but misses a bug.

broad testing scope is

Crucial. j K j

Microservices interact with
databases, services,

4)

NO COVERAGE

INCOMPLETE TESTING

Unit tests miss interaction
failures. These, often the
trickiest issues, can cause
data loss, slowdowns, or
production crashes.

FOR VALIDATIONS

Validations check logical
boundaries but tests that
cover all the lines but poorly
validate these boundaries
still end up reporting high
coverage.

\- J

\- J

Integration Testing made easy for
Developers with HyperTest

HyperTest captures real
interactions between code and
external components using
” actual application traffic, then

converted into integration tests

HyperTest is a game

changer for us in

integration testing, It

h T il It verifies data and
as signiticantly contracts across all

saved time and effort database, 3rd party AP

by green—lighting calls and events

changes before they
0 SMART MOCKING

go live with our
Weekly releases. HyperTest mocks external

components and auto-
refreshes mocks when
dependencies change
behaviour

TESTS INTEGRATION
Q SCENARIOS

Vinay Jaasti
CTO, Airmeet

o RUN WITH CI OR LOCAL

These tests can be run
locally or with CI pipeline
much like unit tests

Explore AN HYPERTEST

http://hypertest.co/
http://hypertest.co/
http://hypertest.co/
http://hypertest.co/

0 Observability

HyperTest SDK

@ loadgenerator

5851

@ frontend

421 316

420

checkoutservice
2289
addservice @ @ paymentservice

recommendationservice 4564 317

632

1
583 632 316

421 835 .)
emailservice
paymentservice @ shippingservice @ @
currencyservice

cartservice

316

@ quoteservice

featureflagservice

HyperTest is initialized on every microservice with its SDK.

e |t then generates the trace of every incoming call i.e.
request, response, outgoing call and outbound response.

e When done for all services, it generates an observability
chart that reports all upstream-downstream pairs i.e.
relationship between all services.

\
Support »
3 Multiple
Protocols

e Distributed
Tracing

HyperTest is capable of
supporting all the commonly
used web protocols like HTTP
HTTP 11 , HTTP 2 LIKE
GraphQL, gRPC etc.

HyperTest context
propagation provides traces
that spans multiple micro-
services and helps developers
debug the root cause of any

failure in a single view Also supports all non-http calls

like databases, queues like
Kafka, NATS, RabbitMQ and all
pub/sub systems

[User Interface Service]---|

!
I

Order Service]

-> [Inventory Service]

| HTTP, HTTP1.1, HTTP 2

SQL / noSQL databases

-> [Payment Service]

| ---» Process Payment

Message Queues and
Pub/Sub Systems

---> [
I
I
I
| | ---> check Inventory
I
I
I
I
I
I

-> [Shipping Service]

| ---» Schedule Delivery

© © 006

Web sockets

|---> [Order Service]

| ---> Update Order Status

|---> [User Interface Service]

| ---> Display Confirmation

A

Q Code Coverage

HyperTest generates a code coverage report after every run.
This highlights clearly how it tests code paths for both the data
and integration layer along with the core logic

Complete
All files sample-banking-node summary of
62,96% Slalements 1306 GL199% Branches £1567 43479 Fun 10023 63.84% Lines 1385213 code coverage

File = Slalements Branches Functions Lines

hiCont. s | 1005 am 100% o0 1009 o0 1005
cresds.js | 100% 18 10096 o0 1009 o0 100%
dbSeed js 0% 29 098 (1] 0% o3 0%
i, 5 | 92.3% 132143 BT.23% anaT 1007 10010 92.3%
simimuslate Traffic.js [15.] a0 L 4 % win L]

All files | sample-banking-node index.js

92.3% Statements 132/143 B87.23% Branches 41/47 100% Functions 18/1@ 92.3% Lines 132/143

Press n ar j to go to the next uncovered block, b, p or k for the previous block,
|
|

1x process.env.HT_MODE = process.env.HT_MODE || 'RECORD';

1x const htSdk = require('@hypertestco/node-sdk');
1x const Date = htSdk.HtDate; ant

1x const localServiceld = 'e700b4bd-7395-4217-988e-8bcdcc3befbe’;

1% conSt remoteServiceld = '8e950615-2d5f-4e64-acle-62d972e82c80’
10 1x const creds = require('./creds')
11 1x const serviceld = 'e700b4bd-7395-4217-988e-8bcdcc3befbe’ || creds.serviceldentifer;
1
1 j 1 1l]
14 if (!serviceld) {
15 throw new Error('Please set service id'); .
-) . uncovered lines
& L]
= . of code
L]
bug] | ‘ highlighted
2% let newBalance = account.current_balance - amount;
2 if (newBalance < account.minimum_balance) {
throw new Error('Transaction would result in balance falling below the minimum required');
}
3 2% awall pool.query(UPDATE accounts SET current_balance = 51 WHERE 1d - 32', |[newBalance, accountld]);
1x const transactionType = amount »>= @ 7 'credit' : 'debit’
1x await pool.query('INSERT INTO transactions (account_id, amount, transaction_type) VALUES (%1, %2, $3)',
1% return { status: 'Transaction successful', oldBalance: account.current_balance, newBalance };
} catch (error) {
) 3x reply.status(4e8).send({ error: error.message });

e Smart-Mocking

HyperTest smartly mocks external systems like databases, queues,

downstream or 3rd party APIs that your code interacts with.

It also smartly auto-refreshes these mocks as dependencies change

their behavior keeping tests non-flaky, deterministic, trustworthy and

consistent

TEST GENERATION MODE

4 N
HT SDK
HT SDK
Product Search
Token + searchParam 9] / GATEWAY Catalog Search Product Seerch Query
SERVICE el i
SERVICE DB
l Expected
Expected ‘ SKU + inventory
: Inventory info
Expected
product List
N\ %
TEST MODE
4 N
Product Search
Token + searchParam
Uu Catalog Search
GATEWAY MOCKED .
ocked
SERVICE CATALOG 08
SERVICE
mocked inventory info
Actual
productList
L
[T |
Expected
\ product List /

Never worry about creating
or managing test data

HyperTest can test stateful flows without needing
teams to create or manage test data.

Testing Payment Service

Without HyperTest With HyperTest

D S o0

State: Loggedin HyperTest sets initial
state with mocked

data

02 Search for Product
Mock Data

Find product
HyperTest provides
State: Product pre-recorded
selected scenarios for all
service calls including
user login, product

03 Add to Cart search, and cart
additions
Add product to cart
State: Cart
updated
To test the fourth step of
04 Proceed to Payment this user journey, first
maintain the state to
Choose UPI method ensure all necessary data
-)] is in place to reach your
8 Action: Submit chosen step.
payment

Summary

The hidden cost of microservices is integration
failures.

e With the help of its capabilities like Smart
mocking, no test data preparation, tracing
etc., HyperTest is trying to make this 2024
uncertainty go away by making integration

testing easy for developers. Teams should Launched our
Java SDK

never leak integration failures.

2023

100 services go
2023 live
2022
Node SDK Launch
HyperTest was
started

Generating Greatness

Companies like Porter,
Paysense, Nykaa, Mobisy,
Skuad and Fyers leverage
HyperTest to accelerate time
to market, reduce delays and
iImprove code quality without
needing to write or maintain
automation

Explore AN HYPERTEST

http://hypertest.co/
http://hypertest.co/
http://hypertest.co/
http://hypertest.co/

